TRUCKEE RIVER WATERSHED COUNCIL HOKE MEADOWS CULVERT DESIGN

> DRAINAGE REPORT DECEMBER 2020

AUERBACH ENGINEERING CORPORATION

Table of Contents

Ι.	Introduction	.1
Α.	Background Information	1
II.	Design Criteria and Assumptions	.1
III.	Existing Conditions	.2
IV.	Proposed Conditions	.4
V.	Summary and Recommendations	.5
VI.	References	.6

Figures

Figure 1: Tailwater/Channel Cross Section	3
Figure 2: Existing Rating Curve	3
Figure 3: Proposed Rating Curve	4

Tables

e 1: Discharge Data2

Appendices

Appendix A: Manning's n Calculations Appendix B: Proposed Aprons Hydraulic Toolbox Results Appendix C: Proposed Embedment Hydraulic Toolbox Results Appendix D: Existing Conditions HY-8 Results Appendix E: Proposed Conditions HY-8 Results Appendix F: Hoke Meadows Restoration Preliminary Design

Drainage Report

Hoke Meadows Culverts

I. Introduction

This Drainage Report is intended for submission with the construction drawings for review by Sierra County (County) for the Hoke Meadows Restoration Culvert Design Project (Project). This report has been prepared at the request of the Truckee River Watershed Council.

Hoke Meadows is on the northeast arm of Stampede Reservoir in the Truckee Ranger District of the Tahoe National Forest. Hoke Meadows is divided by Stampede Dam Road (a.k.a. County Route 270). The Project includes the embedment of an existing arch pipe culvert and the installation of four arch pipe culverts to aid in the restoration of functional floodplain processes in Hoke Meadows. The *Hoke Meadows Restoration Preliminary Design* report is included in Appendix F.

This report includes the following information.

- Review of background information
- Design criteria and assumptions
- Summary of the existing conditions
- Summary of the proposed conditions
- Summary and Recommendations

A. Background Information

Auerbach Engineering Corporation (AEC) reviewed the following documents associated with the site:

• Plumas Corporation (October 2020).

II. Design Criteria and Assumptions

Per Sierra County Code Chapter 12.08, "All drainage facilities shall be designed and engineered to carry surface and subsurface waters to the nearest adequate street, storm drain, natural watercourse, or other juncture, without unreasonably contributing to erosion or sedimentation problems or offsite drains or drainages in accordance with California Law". Hydrologic and Hydraulic methods are not included in Sierra County Code Chapter 12.08, therefore engineering standard of care is used to select the following methodology.

Peak flows for the existing culvert analysis and proposed design are determined from streamflow statistics as presented by Plumas Corp in the *Hoke Meadows Restoration Preliminary Design*. The AEC hydraulic analysis uses the streamflow statistics. The following table is a summary of the discharge data.

RECURRANCE INTERVAL	UNITS	FLOW
РК2	CFS	86.6
РК5	CFS	175
РК10	CFS	259
РК25	CFS	379
РК50	CFS	511
РК100	CFS	636
РК200	CFS	810
PK500	CFS	1040

Table 1: Discharge Data

Culvert hydraulics are modeled for the existing and proposed condition using HY-8², a Federal Highway Administration culvert hydraulic analysis program. The tailwater channel, roadway profile, culvert, and site geometric data are available from the survey prepared by AEC. Manning's n values for the floodplain and channel are selected based on the Placer County Stormwater Management Manual Table 8-1¹. Manning's n values for the existing and proposed culverts are determined based on the auto-populated values from HY-8 that correlate to the arch pipe sections.

The riprap analysis for culvert outlet protection function of Hydraulic Toolbox³, a Federal Highway Administration analysis program, is used to size proposed embedment riprap and outfall aprons. Equivalent diameters are used due to the inability to input arch pipe sizes. Manning's n values for the embedment material are determined based on Table 2.2 in HEC-15⁴ per interpolation calculations in Appendix A.

III. Existing Conditions

The existing culvert under Stampede Dam Road measures 196" span by 122" rise. The nearest standard arch pipe section is an aluminum structural plate pipe arch of 196" span by 126" rise. The Manning's n-value for the culvert per HY-8 is 0.034. The culvert has no embedment depth and is straight with a projecting inlet. The tailwater floodplain and channel n-values used are 0.04 and 0.11, per calculations in Appendix A. Figure 1 depicts the tailwater channel section input and Figure 2 illustrates the resulting rating curve for the existing culvert. Appendix D includes HY-8 results for existing condition hydraulics.

Drainage Report

Hoke Meadows Culverts

IV. Proposed Conditions

The Project includes installation of four new culverts with riprap aprons and embedment of the existing culvert under Stampede Dam Road. The Manning's n value for the existing culvert is 0.034 per HY-8 and the n value for the bottom is 0.080 per HEC-15 Table 2.2. The four new culverts are pipe arch 64" span by 43" rise. There is no embedment proposed in the new culverts, which have a Manning's n value of 0.024 per HY-8. The tailwater channel cross section is not proposed to be modified. The size of the new culverts is selected to maintain overtopping of the road at equal to or greater than 1612-cfs per the existing culvert analysis. Figure 3 illustrates the total rating curve for all culverts under the proposed condition. Appendix E includes HY-8 results for proposed hydraulics.

Figure 3: Proposed Rating Curve

The proposed riprap aprons for the new culverts are FHWA Class 3 riprap with a depth of 30-inches. FHWA Class I riprap is nearest in gradation to Caltrans Class 3 riprap. Appendix B includes the Hydraulic Toolbox results for apron sizing.

The proposed embedment for the existing culvert is FHWA Class 2 riprap with a depth of 34-inches. FHWA Class 2 riprap is nearest in gradation to Caltrans Class 2 riprap. Aquatic organism passage (AOP) design is not included in this AEC work. Appendix C includes the Hydraulic Toolbox results for embedment sizing.

Drainage Report

Hoke Meadows Culverts

V. Summary and Recommendations

The Project's drainage design conforms to the Sierra County criteria and engineering standard of care. The flow required to overtop the road in the existing condition (1612-cfs) is less than the flow required to overtop the road in the proposed condition (1699-cfs). The installation of the proposed improvements should not create adverse effects.

VI. References

- 1. Placer County. (September 1, 1990). *Placer County Stormwater Management Manual*. Retrieved from <u>https://www.placer.ca.gov/DocumentCenter/View/1249/Stormwater-Management-Manual-PDF</u>
- 2. USDOT Federal Highway Administration. (July 30, 2019). HY-8 Version 7.60 Culvert Hydraulic Analysis Program. Retrieved from <u>https://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/</u>
- 3. USDOT Federal Highway Administration. (August 21, 2020). *Hydraulic Toolbox Version 5.0.* Retrieved from https://www.fhwa.dot.gov/engineering/hydraulics/software/toolbox404.cfm
- USDOT Federal Highway Administration. (September 2005) Hydraulic Engineering Circular No. 1, Third Edition Design of Roadside Channels with Flexible Linings. Retrieved from <u>https://www.fhwa.dot.gov/engineering/hydraulics/pubs/05114/05114.pdf</u>

Drainage Report Hoke Meadows Culverts

APPENDICES

Appendix A: Manning's n Calculations

PLACER COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT STORMIWATER MANAGEMENT MANUAL VIII. STREAMS AND CHANNELS

MANNI	TABLE 8-1 NG N FOR STREAMS AND CHANN	NELS (24)
	UNIFORM CHANNELS	
D	Pescription	n
Concrete		0.012 - 0.016
Earth		0.017 - 0.022
Grass		0.020 - 0.025
Rock, Rubble		0.025 - 0.045
Channel n is a compo	NATURAL STREAMS-CHANNELS site computed from the component n and k values $n = k (n_1 + n_2 + n_3 + n_4)$	s in the table as follows:
Component	Condition	n
Material involved (n_1)	Earth	0.020
	Rock Cut	0.025
	Fine Gravel	0.024
	Course Gravel	0.028
Degree of Irregularity (n2)	Smooth	0.000
	Minor	0.005
	Moderate	0.010
	Severe	0.020
Relative effect of Obstructions (n_3)	Negligible	0.000
	Minor	0.010 - 0.015
	Appreciable	0.020 - 0.030
	Severe	0.040 - 0.060
Vegetation (n_4)	Low	0.005 - 0.010
	Medium	0.010 - 0.025
	High	0.025 - 0.050
	Very High	0.050 - 0.100
Degree of Meandering (k)	Minor	1.000
	Appreciable	1.150
	Severe	1.300

PLACER COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT STORMWATER MANAGEMENT MANUAL VIII. STREAMS AND CHANNELS

TABLE 8-1 (CONTINUED) MANNING N FOR NATURAL STREAMS - FLOODPLAIN			
Description	Condition	n	
Pasture	Short Grass	0.025 - 0.035	
	High Grass	0.030 - 0.050	
Cultivated Areas	No Crop	0.020 - 0.040	
	Mature Row Crops	0.025 - 0.045	
	Mature Field Crops	0.030 - 0.050	
Brush	Scattered brush, heavy weeds	0.035 - 0.070	
	Light brush/trees, winter	0.035 - 0.060	
	Light brush/trees, summer	0.040 - 0.080	
	Medium to dense brush, winter	0.045 - 0.110	
	Medium to dense brush, summer	0.070 - 0.160	
Trees	Dense willows, summer, straight	0.110 - 0.200	
	Cleared land with tree stumps, no sprouts	0.030 - 0.050	
	Same as above, but with heavy growth of sprouts	0.050 - 0.080	
	Heavy stand of timber a few down trees, little undergrowth, flood stage below branches	0.080 - 0.120	
	As above, but with flood stage reaching branches	0.100 - 0.160	

The effect of channel work on existing culverts, bridges, buried cables, pipelines, irrigation flumes, and inlet structures shall be evaluated to determine the need for modification or replacement.

f. Culverts and Brides Culverts and bridges that are modified or added as part of channel projects shall meet reasonable standards for the type of structure and shall have a minimum capacity equal to the design discharge or state agency design requirements, whichever is greater. Capacity of some culverts and bridges may need to be increased above the design discharge. <u>g. Disposition of spoil</u> Spoil material from clearing, grubbing, and channel excavation shall be disposed of in a manner that will:

- Not confine or direct flows so as to cause instability when the discharge is greater than the bankfull flow.

- Provide for the free flow of water between the channel and flood plain unless the valley routing and water surface profile are based on continuous dikes being installed.

2. Natural Channels Natural waterways are important in conveying storm runoff in Placer County. The objectives of the

AUERBACH ENGINEERING CORPORATION civil engineering • Land surveying • environmental planning

Project Name: Hoke Meadows Restoration Culvert Design	Project No.:	419.01		
Subject: Manning's n calculations				
Date: 12/11/2020 By: Cindy Steele	Page: 1	of 1		
TAILWATER CHANNEL MANNING'S N				
$n = k(n_1 + n_2 + n_3 + n_4)$				
$n_1 = 0.20$ (earth)				
$n_3 = 0.025$ (appreciable effect of obstructions)				
$n_4 = 0.04$ (high vegetation)				
k = 1.15 (appreciable meandering)				
n = 1.15(0.20 + 0.01 + 0.025 + 0.04)				
n = 0.11				

Appendix B: Proposed Aprons Hydraulic Toolbox Results

Drainage Report

Hoke Meadows Culverts

III (P) Apron

Structure type: Culvert Outlet Protection		•	•	Geotextile/Granular Filter Design
Parameter	Value	Units	Notes	
Channel Parameters				
Select Channel	PK500 Channel P 📃			
	Channel Calculator			
Design Flow	129.480	cfs		
Channel Depth	2.468	ft		
Slope	0.054	ft/ft		
Bottom Width	0.000	ft		
Area	116.767	ft^2		
Top Width	139.753	ft		
Wetted Perimeter	140.477	ft		
Hydraulic Radius	0.831	ft		
Input Parameters				
	Transfer Values From Channel Calculator			
Flow	129.480	cfs		
Culvert Diameter	4.500	ft		
Normal Depth in Culvert	2.468	ft		
Tailwater Depth	1.800	ft	If tailwater is unknown, use 0.4D	
Flow Type	subcritical 💌			
Results				
D50	11.621	in		
D50	0.968	ft	The sizing equation assumes a rock s.g. =	2.65. If s.g. is not 2.65, rock size (D
Riprap Shape	Riprap shape should be angular			
Riprap Class				
Riprap Class Name	CLASS III			
Riprap Class Order	3			
D15	9.00	in	This value is an 'average' of the size fract	ion range for the selected riprap class
D50	12.50	in	This value is an 'average' of the size fract	ion range for the selected riprap class
D85	17.00	in	This value is an 'average' of the size fract	ion range for the selected riprap class
D100	24.00	in	This value is an 'average' of the size fract	ion range for the selected riprap class
Layout				
Apron Length	22.500	ft		
Apron Thickness	2.500	ft		
Apron Width (at apron end)	28.500	ft		
Computation Variables				
Tailwater Depth Used in Computations	1.800	ft		
Culvert Diameter Used in Calculations	4.500	ft		

OK Cancel

 \times

Hydraulic Analysis Report

Project Data

Project Title: 419.01 TRWC Hoke Meadows Restoration Culvert Design Designer: By: Cindy Steele; Checked: Chris Anderson Project Date: Friday, November 13, 2020 Project Units: U.S. Customary Units Notes:

Riprap Analysis: (P) Apron

Notes:

Input Parameters

Riprap Type: Culvert Outlet Protection Flow: 129.48 cfs Culvert Diameter: 4.5 ft Normal Depth in Culvert: 2.46768 ft Tailwater Depth: 1.8 ft If tailwater is unknown, use 0.4D flow is sbcritical

Result Parameters

Tailwater Depth Used in Computations: 1.8 ft Culvert Diameter Used in Computations: 4.5 ft Computed D50: 11.6213 in

Riprap Class

Riprap Name: CLASS III

Riprap Class: III

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 24 in

d85: 17 in

d50: 12.5 in

d15: 9 in

Layout Recommendations

Apron Length: 22.5 ft Apron Depth: 2.5 ft Apron Width (at end): 28.5 ft Name of Selected Channel: PK500 Channel P No channel used in calculations

Channel Analysis: PK500 Channel P

Notes:

Input Parameters

Channel Type: Custom Cross Section

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5982.10	0.2753
13.78	5980.69	0.2753
34.35	5979.52	0.2753
131.12	5978.10	0.2753
175.26	5976.12	0.2753
200.00	5976.70	0.2753
233.96	5976.70	0.2753
262.18	5978.12	0.2753
277.03	5978.08	0.2753
291.80	5977.22	0.2753
300.09	5975.13	0.2753
302.75	5976.35	0.2753
307.18	5977.18	0.2753
314.49	5977.27	0.2753
315.96	5977.71	0.2753
396.74	5982.19	

Longitudinal Slope: 0.0540 ft/ft Flow: 129.4800 cfs

Result Parameters

Depth: 2.4677 ft Area of Flow: 116.7666 ft^2 Wetted Perimeter: 140.4775 ft Hydraulic Radius: 0.8312 ft Average Velocity: 1.1089 ft/s Top Width: 139.7526 ft Froude Number: 0.2138 Critical Depth: 1.7724 ft Critical Velocity: 3.5553 ft/s Critical Slope: 1.5223 ft/ft Critical Slope: 1.5223 ft/ft Calculated Max Shear Stress: 8.3151 lb/ft^2 Calculated Avg Shear Stress: 2.8009 lb/ft^2 Composite Manning's n Equation: Lotter method Manning's n: 0.2753

Selected Profile: FHWA Profile (read-only)

Culvert Assessment Profiles

Culvert Assessment Profile Name: Standard (read-only)

Maximum Excavation Depth: 20 ft

Maximum Shallow Cover: 4 ft

Maximum Small Pipe Size: 36 in

Minimum Manned Entry Size: 48 in

Riprap Classes

Riprap Name: CLASS I

Riprap Class: I

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 12 in d85: 9 in

d50: 6.5 in

uso. 0.5 m

d15: 4.5 in

Riprap Name: CLASS II

Riprap Class: II

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 18 in d85: 13 in d50: 9.5 in d15: 7 in

Riprap Name: CLASS III

Riprap Class: III

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 24 in d85: 17 in d50: 12.5 in d15: 9 in

Riprap Name: CLASS IV

Riprap Class: IV

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 30 in

d85: 21 in

d50: 15.5 in

d15: 10.5 in

Riprap Name: CLASS V

Riprap Class: V

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 36 in

d85: 25.5 in

d50: 18.5 in

d15: 13 in

Riprap Name: CLASS VI

Riprap Class: VI

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 42 in

d85: 30 in

d50: 21.5 in

d15: 15 in

Riprap Name: CLASS VII

Riprap Class: VII

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 49.5 in

d85: 35 in

d50: 25.5 in

d15: 17.5 in

Riprap Name: CLASS VIII

Riprap Class: VIII

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 60 in

d85: 42.5 in

d50: 31.5 in

d15: 22 in

Riprap Name: CLASS IX

Riprap Class: IX

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 72 in

d85: 51 in

d50: 38 in

d15: 26 in

Riprap Name: CLASS X

Riprap Class: X

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 84 in

d85: 59.5 in

d50: 44.5 in

d15: 31 in

Appendix C: Proposed Embedment Hydraulic Toolbox Results

Drainage Report

Hoke Meadows Culverts

Structure type: Culvert Outlet Protection			▼ Geotextile/Granular Filter Des
Parameter	Value	Units	Notes
Channel Parameters			
Select Channel	PK500 Channel E	·	
	Channel Calculator		
Design Flow	523.370	cfs	
Channel Depth	3.622	ft	
Slope	0.054	ft/ft	
Bottom Width	0.000	ft	
Area	339.322	ft^2	
Top Width	248.033	ft	
Wetted Perimeter	248.846	ft	
Hydraulic Radius	1.364	ft	
input Parameters			
	Transfer Values From Channel Calculator	1	
Flow	523.370	cfs	
Culvert Diameter	13.400	ft	
Normal Depth in Culvert	3.622	ft	
Tailwater Depth	5.200	ft	If tailwater is unknown, use 0.4D
Flow Type	subcritical	·	
Results			
D50	5.866	in	
D50	0.489	ft	The sizing equation assumes a rock s.g. = 2.65. If s.g. is not 2.65, rock size
liprap Shape	Riprap shape should be angular		
Riprap Class			
Riprap Class Name	CLASS I		
Riprap Class Order	1		
D15	4.50	in	This value is an 'average' of the size fraction range for the selected riprap
D50	6.50	in	This value is an 'average' of the size fraction range for the selected riprap
D85	9.00	in	This value is an 'average' of the size fraction range for the selected riprap
D 100	12.00	in	This value is an 'average' of the size fraction range for the selected riprap
ayout			
Apron Length	53.600	ft	
Apron Thickness	1.896	ft	
Apron Width (at apron end)	75.933	ft	
Computation Variables			
Tailwater Depth Used in Computations	5.360	ft	
Culvert Diameter Used in Calculations	13 400	ft.	

OK Cancel

×

Hydraulic Analysis Report

Project Data

Project Title: 419.01 TRWC Hoke Meadows Restoration Culvert Design Designer: By: Cindy Steele; Checked: Chris Anderson Project Date: Friday, November 13, 2020 Project Units: U.S. Customary Units Notes:

Riprap Analysis: (E) Embedment

Notes:

Input Parameters

Riprap Type: Culvert Outlet Protection Flow: 523.37 cfs Culvert Diameter: 13.4 ft Normal Depth in Culvert: 3.62167 ft Tailwater Depth: 5.2 ft If tailwater is unknown, use 0.4D flow is sbcritical

Result Parameters

Tailwater Depth Used in Computations: 5.36 ft Culvert Diameter Used in Computations: 13.4 ft Computed D50: 5.86564 in

Riprap Class

Riprap Name: CLASS I

Riprap Class: I

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 12 in

d85: 9 in

d50: 6.5 in

d15: 4.5 in

Layout Recommendations

Apron Length: 53.6 ft Apron Depth: 1.89583 ft Apron Width (at end): 75.9333 ft Name of Selected Channel: PK500 Channel E No channel used in calculations

Channel Analysis: PK500 Channel E

Notes:

Input Parameters

Channel Type: Custom Cross Section

Cross Section Data

Elevation (ft)	Elevation (ft)	Manning's n
0.00	5982.10	0.2753
13.78	5980.69	0.2753
34.35	5979.52	0.2753
131.12	5978.10	0.2753
175.26	5976.12	0.2753
200.00	5976.70	0.2753
233.96	5976.70	0.2753
262.18	5978.12	0.2753
277.03	5978.08	0.2753
291.80	5977.22	0.2753
300.09	5975.13	0.2753
302.75	5976.35	0.2753
307.18	5977.18	0.2753
314.49	5977.27	0.2753
315.96	5977.71	0.2753
396.74	5982.19	

Longitudinal Slope: 0.0540 ft/ft Flow: 523.3700 cfs

Result Parameters

Depth: 3.6217 ft Area of Flow: 339.3219 ft² Wetted Perimeter: 248.8460 ft Hydraulic Radius: 1.3636 ft Average Velocity: 1.5424 ft/s Top Width: 248.0325 ft Froude Number: 0.2324 Critical Depth: 2.3781 ft Critical Velocity: 5.0086 ft/s Critical Slope: 1.2096 ft/ft Critical Slope: 1.2096 ft/ft Critical Top Width: 134.14 ft Calculated Max Shear Stress: 12.2036 lb/ft² Calculated Avg Shear Stress: 4.5947 lb/ft² Composite Manning's n Equation: Lotter method Manning's n: 0.2753

Selected Profile: FHWA Profile (read-only)

Culvert Assessment Profiles

Culvert Assessment Profile Name: Standard (read-only)

Maximum Excavation Depth: 20 ft

Maximum Shallow Cover: 4 ft

Maximum Small Pipe Size: 36 in

Minimum Manned Entry Size: 48 in

Riprap Classes

Riprap Name: CLASS I

Riprap Class: I

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 12 in d85: 9 in

d50: 6.5 in

uso. 0.5 m

d15: 4.5 in

Riprap Name: CLASS II

Riprap Class: II

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 18 in d85: 13 in d50: 9.5 in d15: 7 in

Riprap Name: CLASS III

Riprap Class: III

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 24 in d85: 17 in d50: 12.5 in d15: 9 in

Riprap Name: CLASS IV

Riprap Class: IV

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 30 in

d85: 21 in

d50: 15.5 in

d15: 10.5 in

Riprap Name: CLASS V

Riprap Class: V

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 36 in

d85: 25.5 in

d50: 18.5 in

d15: 13 in

Riprap Name: CLASS VI

Riprap Class: VI

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 42 in

d85: 30 in

d50: 21.5 in

d15: 15 in

Riprap Name: CLASS VII

Riprap Class: VII

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 49.5 in

d85: 35 in

d50: 25.5 in

d15: 17.5 in

Riprap Name: CLASS VIII

Riprap Class: VIII

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 60 in

d85: 42.5 in

d50: 31.5 in

d15: 22 in

Riprap Name: CLASS IX

Riprap Class: IX

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 72 in

d85: 51 in

d50: 38 in

d15: 26 in

Riprap Name: CLASS X

Riprap Class: X

The following values are an 'average' of the size fraction range for the selected riprap class.

d100: 84 in

d85: 59.5 in

d50: 44.5 in

d15: 31 in

Appendix D: Existing Conditions HY-8 Results
Hoke Meadows Culverts

ssing Properties				Culvert Properties	_		
ame:				EX Culvert	Add Culvert		
Parameter	Value		Units		Duplicate Culvert		
🕜 DISCHARGE DATA							
Discharge Method	User-Defined				Delete Culvert		
Discharge List	Define			Parameter	Value		Units
🕜 TAILWATER DATA				CULVERT DATA			
Channel Type	Irregular Channel	-		Name	EX Culvert		
Irregular Channel	Define			Shape	Pipe Arch		
Rating Curve	View			Material	Aluminum Structural Plate	-	
🕜 ROADWAY DATA				Size	Define	_	
Roadway Profile Shape	Constant Roadway Elevation			Span	196.000		in
First Roadway Station	0.000		ft	Rise	126.000		in
Crest Length	300.000		ft	Embedment Depth	0.000		in
Crest Elevation	5990.800		ft	Manning's n	0.034	_	
Roadway Surface	Paved	-		Culvert Type	Straight	-	
Top Width	24.000		ft	1 Inlet Configuration	Projecting		
				Inlet Depression?	No	-	
				SITE DATA			
				Site Data Input Option	Culvert Invert Data	-	
				Inlet Station	0.000	_	ft
				Inlet Elevation	5977.190		ft
				Outlet Station	86.000		ft
				Outlet Elevation	5975.140		ft
				Number of Barrels	1		

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater	Discharge Names	Total Discharge	EX Culvert	Roadway	Iterations
Elevation (ft)		(cfs)	Discharge (cfs)	Discharge (cfs)	
5979.39	PK2	86.60	86.60	0.00	1
5980.35	PK5	175.00	175.00	0.00	1
5981.10	PK10	259.00	259.00	0.00	1
5982.01	PK25	379.00	379.00	0.00	1
5983.01	PK50	511.00	511.00	0.00	1
5983.93	PK100	636.00	636.00	0.00	1
5985.12	PK200	810.00	810.00	0.00	1
5986.63	PK500	1040.00	1040.00	0.00	1
5990.80	Overtopping	1612.46	1612.46	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: EX

Rating Curve Plot for Crossing: EX

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	86.60	5979.39	2.196	0.0*	1-S2n	1.450	1.571	1.450	1.651	6.581
PK5	175.00	175.00	5980.35	3.165	0.246	1-S2n	2.011	2.227	2.011	1.814	8.268
PK10	259.00	259.00	5981.10	3.908	0.821	1-S2n	2.429	2.720	2.429	1.935	9.407
PK25	379.00	379.00	5982.01	4.825	1.591	1-S2n	2.932	3.316	2.932	2.082	10.678
PK50	511.00	511.00	5983.01	5.816	2.424	1-S2n	3.421	3.885	3.421	2.222	11.774
PK100	636.00	636.00	5983.93	6.741	3.231	1-S2n	3.850	4.368	3.850	2.333	12.623
PK200	810.00	810.00	5985.12	7.934	4.407	1-S2n	4.416	4.976	4.430	2.469	13.542
PK500	1040.00	1040.00	5986.63	9.441	6.100	1-S2n	5.146	5.708	5.165	2.627	14.542

 Table 2 - Culvert Summary Table: EX Culvert

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 5977.19 ft, Outlet Elevation (invert): 5975.14 ft Culvert Length: 86.02 ft, Culvert Slope: 0.0238

Culvert Performance Curve Plot: EX Culvert

Water Surface Profile Plot for Culvert: EX Culvert

Site Data - EX Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5977.19 ft Outlet Station: 86.00 ft Outlet Elevation: 5975.14 ft Number of Barrels: 1

Culvert Data Summary - EX Culvert

Barrel Shape: Pipe Arch Barrel Span: 196.00 in Barrel Rise: 126.00 in Barrel Material: Aluminum Structural Plate Embedment: 0.00 in Barrel Manning's n: 0.0340 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
86.60	5976.78	1.65	3.13	5.56	0.98
175.00	5976.94	1.81	4.09	6.11	1.08
259.00	5977.06	1.93	4.73	6.52	1.14
379.00	5977.21	2.08	5.38	7.01	1.20
511.00	5977.35	2.22	5.85	7.49	1.24
636.00	5977.46	2.33	6.26	7.86	1.26
810.00	5977.60	2.47	6.74	8.32	1.28
1040.00	5977.76	2.63	7.27	8.85	1.32

 Table 3 - Downstream Channel Rating Curve (Crossing: EX)

Tailwater Channel Data - EX

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: EX

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 5990.80 ft Roadway Surface: Paved Roadway Top Width: 24.00 ft

Appendix E: Proposed Conditions HY-8 Results

Crossing Data - PROP

				Prop Culvert 1	Add Culvert			
Parameter	Value	Units		Prop Culvert 2 Prop Culvert 3	Duplicate Culvert			
🕜 DISCHARGE DATA				Prop Culvert 4	Delete Columb			
Discharge Method	User-Defined	-			Delete Culvert			
Discharge List	Define		Ī	Parameter	Value		Units	
7 TAILWATER DATA				CULVERT DATA				
Channel Type	Irregular Channel	-		Name	EX Culvert w Embedment			
Irregular Channel	Define			Shape	Pipe Arch	-		
Rating Curve	View			Material	Aluminum Structural Plate	-	1	
ROADWAY DATA				Size	Define			
Roadway Profile Shape	Constant Roadway Elevation	-		Span	196.000		in	
First Roadway Station	0.000	ft		Rise	126.000		in	
Crest Length	300.000	ft		🕢 Embedment Depth	34.000	_	in	
Crest Elevation	5990.800	ft		Manning's n (Top/Sides)	0.034		1	
Roadway Surface	Paved	-		Manning's n (Bottom)	0.080		1	
Top Width	24.000	ft		O Culvert Type	Straight	•		
				Inlet Configuration	Thin Edge Projecting	-		
				Inlet Depression?	No	-	(
				ITE DATA				
				Site Data Input Option	Culvert Invert Data	-		
				Inlet Station	0.000		ft	
				Inlet Elevation	5977.190		ft	
				Outlet Station	86.000		ft	
				Outlet Elevation	5975.140		ft	1

-

Hoke Meadows Culverts

sing Properties			Culvert Properties			
me: PROP			EX Culvert w Embedment Prop Culvert 1	Add Culvert		
incomo los	[Helton	Links	Prop Culvert 2	Dunicate Outvert		
arameter	Value	Units	Prop Culvert 3 Prop Culvert 4	Duplicate current		
Vischarge Method	Liter Defined	-		Delete Culvert		
Vischarge Method	Define					
	Dennea		Parameter	Value		Units
Thannel Turne	Irreader Channel		CULVERT DATA			
rran dar Channel	Define	-	Name	Prop Culvert 1	_	
Pating Curpus	View		Shape	Pipe Arch	-	
	VICW		Material	Steel or Aluminum	-	
Conductor Drofile Shape	Constant Readway Elevation	-	Size	Define		
Roadway Profile Shape	Constant Roadway Elevation	-	Span	64.000		in
First Roadway Stadon	200,000	n.	Rise	43.000		in
Crest Length	500.000	π	🕜 Embedment Depth	0.000		in
Crest Elevation	5990.800	π	Manning's n	0.024		
Roadway Surface	Paved	-	Culvert Type	Straight	-	
Top Width	24.000	ft	Inlet Configuration	Projecting	-	
			Inlet Depression?	No	-	
			SITE DATA			
			Site Data Input Option	Culvert Invert Data	-	
			Inlet Station	0.000		ft
			Inlet Elevation	5980.500		ft
			Outlet Station	82.000		ft
			Outlet Elevation	5977.800		ft
			Number of Barrels	1		

Hoke Meadows Culverts

Crossing Data - PROP

Crossing Properties Culvert Properties Name: PROP EX Culvert w Embedment Add Culvert Prop Culvert 1 **Duplicate Culvert** Parameter Prop Culvert 3 Value Units Prop Culvert 4 **DISCHARGE DATA** Delete Culvert Discharge Method User-Defined Ŧ Discharge List Define... Parameter Value Units 7 TAILWATER DATA CULVERT DATA Channel Type Irregular Channel Ŧ Prop Culvert 2 Name Irregular Channel Define... Shape Pipe Arch ٠ Rating Curve View... Ŧ 🕜 Material Steel or Aluminum **ROADWAY DATA** Define. Size Roadway Profile Shape Constant Roadway Elevation -64.000 Span in First Roadway Station 0.000 ft 43.000 Rise in Crest Length 300.000 ft 🕜 Embedment Depth 0.000 in Crest Elevation 5990.800 ft 0.024 Manning's n Roadway Surface Paved Ŧ 🕜 Culvert Type Straight Ŧ Top Width 24.000 ft 🕜 Inlet Configuration Ŧ Projecting 🕜 Inlet Depression? No Ŧ 🕜 SITE DATA Site Data Input Option Culvert Invert Data Ŧ Inlet Station 0.000 ft Inlet Elevation 5980.500 ft Outlet Station 87.000 ft Outlet Elevation 5976.320 ft Number of Barrels 1 Click on any 😧 icon for help on a specific topic Low Flow AOP Energy Dissipation Analyze Crossing Help OK Cancel

_

 \times

Hoke Meadows Culverts

Crossing Data - PROP

– 🗆 🗙

me: PROP				EX Culvert w Embedment Prop Culvert 1 Prop Culvert 2	Add Culvert		
Parameter	Value		Units	Prop Culvert 3	Duplicate Culvert		
🕜 DISCHARGE DATA				Prop Culvert 4	Delete Coluert		
Discharge Method	User-Defined				Delete Culvert		
Discharge List	Define			Parameter	Value		Units
7 TAILWATER DATA				CULVERT DATA			
Channel Type	Irregular Channel	-		Name	Prop Culvert 3		
Irregular Channel	Define			Shape	Pipe Arch	-	
Rating Curve	View			Material	Steel or Aluminum	+	i –
🕜 ROADWAY DATA				Size	Define	_	í
Roadway Profile Shape	Constant Roadway Elevation	-		Span	64.000		in
First Roadway Station	0.000		ft	Rise	43.000		in
Crest Length	300.000		ft	Embedment Depth	0.000		in
Crest Elevation	5990.800		ft	Manning's n	0.024		
Roadway Surface	Paved	-		Q Culvert Type	Straight	-	
Top Width	24.000		ft	Inlet Configuration	Projecting	-	i
				Inlet Depression?	No	-	i
				SITE DATA			
				Site Data Input Option	Culvert Invert Data	-	
				Inlet Station	0.000	_	ft
				Inlet Elevation	5980.500		ft
				Outlet Station	82.000		ft
				Outlet Elevation	5977.050		ft
				Number of Barrels	1		

Hoke Meadows Culverts

ne: PROP				EX Culvert w Embedment	Add Columnt		
				Prop Culvert 1	Add Colvert		
Parameter	Value		Units	Prop Culvert 2 Prop Culvert 3	Duplicate Culvert		
DISCHARGE DATA				Prop Culvert 4			
Discharge Method	User-Defined	•			Delete Culvert		
Discharge List	Define			Parameter	Value	- In	nite
7 TAILWATER DATA					TOUC		1.5
Channel Type	Irregular Channel	-		Name	Prop Culvert 4		
Irregular Channel	Define			Shape	Pine Arch	*	
Rating Curve	View			Material	Steel or Aluminum	+	
🕜 ROADWAY DATA				Size	Define	-	
Roadway Profile Shape	Constant Roadway Elevation	-		Span	64.000	'n	
First Roadway Station	0.000	t	ft	Rise	43.000	in	
Crest Length	300.000	t	ft	Embedment Depth	0.000	in	
Crest Elevation	5990.800	t	ft	Manning's n	0.024	-	
Roadway Surface	Paved	-		Culvert Type	Straight	•	
Top Width	24.000	f	ft	Inlet Configuration	Projecting	1	
				Inlet Depression?	No	-	
				SITE DATA			
				Site Data Input Option	Culvert Invert Data	•	
				Inlet Station	0.000	ft	
				Inlet Elevation	5980.500	ft	
				Outlet Station	86.000	ft	
				Outlet Elevation	5978.100	ft	
				Number of Barrels	1		

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwate	Discharge	Total	EX	Prop	Prop	Prop	Prop	Roadway	Iterations
r	Names	Discharge	Culvert w	Culvert 1	Culvert 2	Culvert 3	Culvert 4	Discharge	
Elevation		(cfs)	Embedm	Discharge	Discharge	Discharge	Discharge	(cfs)	
(ft)			ent	(cfs)	(cfs)	(cfs)	(cfs)		
			Discharge						
			(cfs)						
5981.39	PK2	86.60	52.53	8.44	8.64	8.56	8.38	0.00	6
5981.98	PK5	175.00	92.02	20.59	21.07	20.88	20.43	0.00	4
5982.46	PK10	259.00	128.21	32.45	33.15	32.87	32.23	0.00	4
5983.06	PK25	379.00	180.48	49.37	50.17	49.86	49.10	0.00	4
5983.68	PK50	511.00	237.90	68.01	68.81	68.50	67.75	0.00	2
5984.27	PK100	636.00	296.52	84.65	85.38	85.08	84.41	0.00	3
5985.14	PK200	810.00	387.61	105.42	106.00	105.77	105.22	0.00	3
5986.37	PK500	1040.00	523.37	129.01	129.48	129.29	128.86	0.00	4
5990.80	Overtoppi	1698.55	943.89	188.57	188.87	188.75	188.47	0.00	Overtoppi
	ng								ng

 Table 1 - Summary of Culvert Flows at Crossing: PROP

Rating Curve Plot for Crossing: PROP

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	52.53	5981.39	1.207	1.368	2-M2c	1.119	0.694	0.694	1.651	4.701
PK5	175.00	92.02	5981.98	1.749	1.960	2-M2c	1.576	1.006	1.006	1.814	5.662
PK10	259.00	128.21	5982.46	2.180	2.432	2-M2c	1.935	1.251	1.251	1.935	6.329
PK25	379.00	180.48	5983.06	2.739	3.041	2-M2c	2.402	1.567	1.567	2.082	7.110
PK50	511.00	237.90	5983.68	3.300	3.659	2-M2c	2.875	1.879	1.879	2.222	7.827
PK100	636.00	296.52	5984.27	3.832	4.249	2-M2c	3.331	2.172	2.172	2.333	8.458
PK200	810.00	387.61	5985.14	4.683	5.117	2-M2c	4.016	2.590	2.590	2.469	9.326
PK500	1040.00	523.37	5986.37	5.953	6.351	2-M2c	5.049	3.160	3.160	2.627	10.429

 Table 2 - Culvert Summary Table: EX Culvert w Embedment

Straight Culvert

Inlet Elevation (invert): 5980.02 ft, Outlet Elevation (invert): 5977.97 ft Culvert Length: 86.02 ft, Culvert Slope: 0.0238

Culvert Performance Curve Plot: EX Culvert w Embedment

Water Surface Profile Plot for Culvert: EX Culvert w Embedment

Site Data - EX Culvert w Embedment

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5977.19 ft Outlet Station: 86.00 ft Outlet Elevation: 5975.14 ft Number of Barrels: 1

Culvert Data Summary - EX Culvert w Embedment

Barrel Shape: Pipe Arch Barrel Span: 196.00 in Barrel Rise: 126.00 in Barrel Material: Aluminum Structural Plate Embedment: 34.00 in Barrel Manning's n: 0.0340 (top and sides) Manning's n: 0.0800 (bottom) Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	8.44	5981.39	0.893	0.0*	1-S2n	0.457	0.590	0.457	1.651	5.349
PK5	175.00	20.59	5981.98	1.484	0.0*	1-S2n	0.714	0.960	0.714	1.814	7.263
PK10	259.00	32.45	5982.46	1.957	0.0*	1-S2n	0.909	1.238	0.909	1.935	8.451
PK25	379.00	49.37	5983.06	2.564	0.0*	1-S2n	1.146	1.569	1.146	2.082	9.685
PK50	511.00	68.01	5983.68	3.183	0.189	1-S2n	1.384	1.887	1.384	2.222	10.693
PK100	636.00	84.65	5984.27	3.773	0.993	5-S2n	1.588	2.141	1.601	2.333	11.296
PK200	810.00	105.42	5985.14	4.640	2.133	5-S2n	1.839	2.427	1.869	2.469	11.896
PK500	1040.00	129.01	5986.37	5.873	4.051	5-S2n	2.132	2.711	2.161	2.627	12.542

Table 3 - Culvert Summary Table: Prop Culvert 1

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 5980.50 ft, Outlet Elevation (invert): 5977.80 ft Culvert Length: 82.04 ft, Culvert Slope: 0.0329

Culvert Performance Curve Plot: Prop Culvert 1

Water Surface Profile Plot for Culvert: Prop Culvert 1

Site Data - Prop Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5980.50 ft Outlet Station: 82.00 ft Outlet Elevation: 5977.80 ft Number of Barrels: 1

Culvert Data Summary - Prop Culvert 1

Barrel Shape: Pipe Arch Barrel Span: 64.00 in Barrel Rise: 43.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	8.64	5981.39	0.893	0.0*	1-S2n	0.420	0.597	0.420	1.651	6.133
PK5	175.00	21.07	5981.98	1.484	0.0*	1-S2n	0.656	0.972	0.656	1.814	8.292
PK10	259.00	33.15	5982.46	1.956	0.0*	1-S2n	0.831	1.253	0.831	1.935	9.653
PK25	379.00	50.17	5983.06	2.564	0.0*	1-S2n	1.040	1.584	1.041	2.082	11.063
PK50	511.00	68.81	5983.68	3.183	0.0*	1-S2n	1.245	1.900	1.245	2.222	12.237
PK100	636.00	85.38	5984.27	3.774	0.0*	5-S2n	1.417	2.152	1.446	2.333	12.775
PK200	810.00	106.00	5985.14	4.640	0.748	5-S2n	1.625	2.434	1.654	2.469	13.643
PK500	1040.00	129.48	5986.37	5.873	2.690	5-S2n	1.860	2.716	1.901	2.627	14.348

 Table 4 - Culvert Summary Table: Prop Culvert 2

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 5980.50 ft, Outlet Elevation (invert): 5976.32 ft Culvert Length: 87.10 ft, Culvert Slope: 0.0480

Culvert Performance Curve Plot: Prop Culvert 2

Water Surface Profile Plot for Culvert: Prop Culvert 2

Site Data - Prop Culvert 2

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5980.50 ft Outlet Station: 87.00 ft Outlet Elevation: 5976.32 ft Number of Barrels: 1

Culvert Data Summary - Prop Culvert 2

Barrel Shape: Pipe Arch Barrel Span: 64.00 in Barrel Rise: 43.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	8.56	5981.39	0.893	0.0*	1-S2n	0.432	0.594	0.432	1.651	5.847
PK5	175.00	20.88	5981.98	1.484	0.0*	1-S2n	0.675	0.967	0.675	1.814	7.918
PK10	259.00	32.87	5982.46	1.956	0.0*	1-S2n	0.856	1.247	0.856	1.935	9.216
PK25	379.00	49.86	5983.06	2.564	0.0*	1-S2n	1.076	1.578	1.076	2.082	10.560
PK50	511.00	68.50	5983.68	3.183	0.0*	1-S2n	1.292	1.895	1.299	2.222	11.595
PK100	636.00	85.08	5984.27	3.773	0.265	5-S2n	1.474	2.148	1.474	2.333	12.455
PK200	810.00	105.77	5985.14	4.640	1.405	5-S2n	1.696	2.432	1.728	2.469	12.979
PK500	1040.00	129.29	5986.37	5.873	3.319	5-S2n	1.949	2.714	1.988	2.627	13.679

 Table 5 - Culvert Summary Table: Prop Culvert 3

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 5980.50 ft, Outlet Elevation (invert): 5977.05 ft Culvert Length: 82.07 ft, Culvert Slope: 0.0421

Culvert Performance Curve Plot: Prop Culvert 3

Water Surface Profile Plot for Culvert: Prop Culvert 3

Site Data - Prop Culvert 3

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5980.50 ft Outlet Station: 82.00 ft Outlet Elevation: 5977.05 ft Number of Barrels: 1

Culvert Data Summary - Prop Culvert 3

Barrel Shape: Pipe Arch Barrel Span: 64.00 in Barrel Rise: 43.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)
PK2	86.60	8.38	5981.39	0.893	0.0*	1-S2n	0.473	0.587	0.473	1.651	5.062
PK5	175.00	20.43	5981.98	1.484	0.0*	1-S2n	0.743	0.956	0.743	1.814	6.854
PK10	259.00	32.23	5982.46	1.957	0.0*	1-S2n	0.947	1.233	0.947	1.935	7.979
PK25	379.00	49.10	5983.06	2.564	0.0*	1-S2n	1.199	1.564	1.199	2.082	9.134
PK50	511.00	67.75	5983.68	3.183	0.496	1-S2n	1.453	1.883	1.479	2.222	9.875
PK100	636.00	84.41	5984.27	3.773	1.311	5-S2n	1.673	2.138	1.673	2.333	10.731
PK200	810.00	105.22	5985.14	4.640	2.469	5-S2n	1.947	2.424	1.947	2.469	11.372
PK500	1040.00	128.86	5986.37	5.873	4.412	5-S2n	2.275	2.709	2.303	2.627	11.769

 Table 6 - Culvert Summary Table: Prop Culvert 4

* Full Flow Headwater elevation is below inlet invert.

Straight Culvert

Inlet Elevation (invert): 5980.50 ft, Outlet Elevation (invert): 5978.10 ft Culvert Length: 86.03 ft, Culvert Slope: 0.0279

Culvert Performance Curve Plot: Prop Culvert 4

Crossing - PROP, Design Discharge - 1040.0 cfs Culvert - Prop Culvert 4, Culvert Discharge - 128.9 cfs 5990 5988 5986 Elevation (ft) 5984 5982 5980· 5978· 5976· -20 20 40 60 80 100 Ó Station (ft)

Water Surface Profile Plot for Culvert: Prop Culvert 4

Site Data - Prop Culvert 4

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5980.50 ft Outlet Station: 86.00 ft Outlet Elevation: 5978.10 ft Number of Barrels: 1

Culvert Data Summary - Prop Culvert 4

Barrel Shape: Pipe Arch Barrel Span: 64.00 in Barrel Rise: 43.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
86.60	5976.78	1.65	3.13	5.56	0.98
175.00	5976.94	1.81	4.09	6.11	1.08
259.00	5977.06	1.93	4.73	6.52	1.14
379.00	5977.21	2.08	5.38	7.01	1.20
511.00	5977.35	2.22	5.85	7.49	1.24
636.00	5977.46	2.33	6.26	7.86	1.26
810.00	5977.60	2.47	6.74	8.32	1.28
1040.00	5977.76	2.63	7.27	8.85	1.32

 Table 7 - Downstream Channel Rating Curve (Crossing: PROP)

Tailwater Channel Data - PROP

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: PROP

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 5990.80 ft Roadway Surface: Paved Roadway Top Width: 24.00 ft Appendix F: Hoke Meadows Restoration Preliminary Design

Hoke Meadow Restoration Preliminary Design

Characterization

The 59.8 acre Hoke Meadow Restoration Project is located on an unnamed tributary to Stampede Reservoir on the Truckee Ranger District of the Tahoe National Forest. The meadow and associated channel is actively degrading. The channel is currently four to ten feet below the surface of the meadow floodplain. Headcuts at the bottom of the meadow indicate an active degradation trend that is likely to result in a deeper channel, leading to further soil erosion, loss of herbaceous meadow vegetation and expansion of sagebrush. Several features on the landscape have synergistically contributed to channel degradation. A primary cause of channel incision is County Road 270 that crosses the meadow and bounds the downstream end of the project area. Where the channel intersects the road, it is directed into one single culvert, with an invert elevation approximately two feet below the meadow floodplain. All flood flows travelling down the valley must either pass through this culvert or breach the road berm, which has no additional flood flow culverts. A railroad grade near the top of the project area also likely concentrated the flow into one single culvert (all that is left of the railroad crossing is the bermed railroad grade on either side of the large entrenchment). An unimproved crossing of FS Road 72 (the upvalley boundary of the project area) is contributing to minor channelization further up-valley. An underground petroleum pipeline and telephone line cross the meadow and channel. There are numerous berms on the meadow floodplain that appear to have been constructed to direct overland flood flows. The Emigrant Trail crossed the meadow, and there is an existing non-system road along the toe of the northwest slope in the lower portion of the meadow. The valley was also historically grazed, however, the intensity of grazing is unknown. Over-grazing can compromise the erosion resistance of vegetative ground cover. All of these features and land uses likely had some contribution to channel incision in the project area. The meadow below the county road is in relatively good condition, with flood flows that can access the adjacent meadow floodplain.

Several attempts have been made to address channel conditions in Hoke Valley, although the time frame of the work is unknown. There are approximately five gabion basket structures in the channel. The gabion baskets do not meet in the bottom of the channel, and so have not induced channel aggradation; they may have been an attempt only at bank stabilization. Some of the berms on the meadow floodplain appear to have been an attempt to spread out overland flows. Approximately four rock sills in the channel above the culvert and a berm appear to be an attempt to treat culvert-induced channel degradation, and to direct a meandering channel into the single culvert. Headcuts continue to move up-valley, both within the gully, and on the floodplain. Prior to disturbances in the meadow, surface flows likely occupied multiple small channel features. In the lower half of the valley, the gully is located on a slightly higher crown feature in the middle of the valley, which is indicative of human intervention, and that the existing channel did not evolve naturally.

The drainage area into Hoke Valley just above Stampede Reservoir is 5.9 square miles, with mean annual precipitation of 33.9 inches. The channel in the upper half of the valley was dry during the field survey work in October 2016, with tributary flow from the east totaling less than 0.1 cfs in the lower half of the valley. Table 1 displays peak flow statistics from the USGS Streamstats website.

Statistic	Value	Unit	Dradiation Error (normant)	90-Percent Prediction Interval		
			Frediction Error (percent)	Min	Max	
PK2	86.6	ft3/s	98	22.4	334	
PK5	175	ft3/s	83	53.2	575	
PK10	259	ft3/s	78	83.1	809	
PK25	379	ft3/s	76	125	1150	
PK50	511	ft3/s	76	170	1530	
PK100	636	ft3/s	77	205	1970	
PK200	810	ft3/s	79	256	2570	
PK500	1040	ft3/s	83	317	3410	

Table 1. Streamflow statistics for Hoke Valley from Streamstats for the two- to 500- year return interval flows.

Table 2 below displays analysis of the 17 cross-sections generated from the LiDAR data. The valley slope within the project area is 2.1%, and is fairly uniform from the top to the bottom of the project area. The incised channel dimensions average 76 feet wide and six feet deep. Erosion of the incised channel within the project area has resulted in the loss of approximately 38,000 yds³ of soil. This channel can contain flood flows up to approximately the 25 year event, with infrequent floodplain inundation. It will require approximately 19,000 yds³ of fill to eliminate the existing gully and restore flow to channels on the meadow floodplain surface. Flows would be restored into the remnant multiple channel system that overbanks every year, resulting in restored floodplain function.

Cross-		Gully		R	Floodplain		
section	width	max depth	area	width	max depth	area	width
4	68	4.8	125	26	1.5	25	220
5	84	6.3	340	20	0.4	6	187
6	115	7	570	65	0.7	20	270
7	101	6	395	23	0.4	10	300
8	75	7	300	33	1	23	298
9	72	6	235	23	0.6	10	310
10	118	7	540	remnant lost in gully erosion			283
11	82	7	360	23	23 0.4 1		260
12	76	10	433	19	0.9	10	300
13	65.4	5.9	200	32	0.5	12	335
14	56	5	100	36	2.2	20	442
15	59	4	130	33	0.5	9	475
16	20	1.7	20	32	0.5	10	335
17	no	410					
Average	76	6	288	30	0.8	14	316

Table 2. Valley-wide cross-section summary.

Methods

The objective of this restoration design is to restore functional floodplain processes that would restore a wet meadow ecosystem and balanced deposition/erosion floodplain processes, while still protecting the county road causeway across the project area bottom. The design considered the fluvial geomorphological process that formed the channel and meadow floodplain system, as well the existing infrastructure in the meadow, and possible causes of degradation. The meadow survey utilized data from June 2014 LiDAR data (completed by Dr. Qinghua Guo of UC Merced for the Tahoe National Forest). The LiDAR elevations are accurate to about six inches. 17 valley-wide cross-sections were generated using ArcGIS 3-D Analyst, and were used to help determine where restored floodplain flow would likely occur. A laser level was used to verify predicted floodplain flow paths, and to determine gully plug locations. Borrow sites for gully plug material were identified on the slopes adjacent to the floodplain. Off-channel borrow areas were identified to minimize the area of ponded water in the restored meadow. Watershed statistics were generated from a query on the USGS Streamstats website for Hoke Valley just above Stampede Reservoir. A rough estimate of flow containment in the incised channel was calculated using the Slope-Area method at cross-section 13.

Design Discussion

Hoke Valley

The mainstem incised channel would be partially filled with 26 gully plug structures (2.8 acres), filled to floodplain elevation. Gaps between the plugs would appear as ponds that would seasonally rise and fall with groundwater levels. These ponds would not be excavated, except for eight shallow excavation locations listed below. Excavations would remain shallow. Two tributaries near the top of the project area would also be plugged, as would an incised floodplain meander bend just above the culvert at the downstream end of the project area. Borrow material would primarily come from the slopes adjacent to the valley, as well as eight small must-cut areas that are required to protect the adjacent downstream plug (plugs 2, T2, 4, 9, 11, 16, 19 & 20). Rock would be used to protect the surface of three plugs that are likely to see overland flow each year (17, 22 & 23). Rock would also be used for 30 riffles. 22 riffles would be placed on the remnant channel, including the exit of pond 4. Eight riffles would be placed to step tributary flow from the east floodplain down to the culvert elevation. Some of the rock for these riffles would be available by dismantling the gabion baskets (about 20 cu yds), and the rest would have to be imported (about 200 cu yds). Rock size would be 4-12", increasing in size toward the bottom of the project.

The project proposal also includes some road work: a) rock 113 feet of the Forest Service Road 72 where it crosses the meadow at the upper project boundary; and b) remove 2,448 feet of non-system road along the NW edge of Hoke Valley, or re-route the road further up the slope. This road on the meadow surface was once closed by berms that have since degraded and now allow pickup truck access from the county road. While the road is not contributing to water quality degradation at this time, the re-activation of the floodplain would make this road impassable for most of the year, with a high likelihood of damage to the floodplain from stuck vehicles.

The ponded water features are likely to maintain year-round surface water in the meadow. Habitat complexity features such as varying water depths, islands, peninsulas, basking logs, etc., would be incorporated into these features as much as is practicable. For plug construction, topsoil would be removed and stockpiled adjacent to the plug fill zone to top dress completed plugs. All plugs and borrow ponds are sited and configured to accommodate surface and subsurface through flow as well as adjacent hillslope surface and groundwater inflows. Plug compaction is intended to match the porosity/transmissivity of the native meadow soils. This allows moisture to move freely within the plug soil profile and support erosion resistant meadow vegetation for long term durability as well as preventing preferential pathways for subsurface flows either in the plug or the native material. All vegetation and larger woody material (lodgepole pine) from either the borrow ponds or the plug fill areas would be salvaged and used for habitat features in the borrow ponds and added surface roughness in key areas of plug fill. Meadow sod and willow transplants would be planted into the plug surfaces, with particular emphasis on seams and velocity reduction of overland flows.

Plug surfaces would be ripped to a depth of 12" to facilitate precipitation infiltration, with the recovered topsoil spread and seeded with native seed. All native vegetation recovered from fill and borrow sites would be transplanted to plug edges, surfaces and key locations on the remnant channel. Equipment transport of material from the slopes to the plugs would be perpendicular to the valley slope.

Unnamed Tributary

The unnamed tributary appears relatively stable at this time, but the removal of six berms and addition of 13 rocked riffles would help maintain stability. The berm removals and one borrow site would supply all of the necessary material to construct the riffles.

APPENDIX A

p. 8 Meadow Cross-sections derived from DEM with ArcGIS

Note Legend: Black line is existing topography, blue arrow points to proposed base flow channel, green line is proposed cut, orange line is proposed fill. Left and right are facing downstream. Beginning at cross-section 13, the tributary channel from the east is shown with a light blue arrow on the left side of the graph.

p. 15 Longitudinal Floodplain Profiles

p. 16 Key Construction Elevations

Plug corner elevations. Elevations are based on assumed elevation of 6051.69 feet at the project nail benchmark (see plan view map for benchmark location at the top of the project area). Empty cells are missing data. All units are in feet.

	ELEV	ELEV	ELEV	Elev	Drop-
Plug	Тор	Тор	Btm	Btm	off
Number	Right	Left	Right	Left	0
T1	6052.98	6053.08	6050.68	6050.63	
M1	6049.48	6049.48	6048.48	6048.28	
M2	6048.25	6048.22	6046.65	6046.65	
T2	6049.95	6050.25			0
M3	6046.64		6045.44	6045.54	1.9
M4	6044.04	6044.24	6042.04	6042.14	2.16
M5	6040.18	6040.48	6038.38	6039.68	2.1
M6	6037.98	6039.28	6037.3	6037.68	1.81
M7	6036.07	6036.17	6033.57	6034.77	
M8	6036.47	6036.37	6031.2	6031.2	0.41
M9	6031.19	6031.09	6028.59	6028.29	1.6
M10	6027.26	6028.16	6024.76	6024.76	1.5
M11	6023.56	6023.66	6022.06	6022.06	1.4
M12	6020.99	6021.09	6019.19	6019.09	
M13	6018.29	6018.59	6016.39	6016.89	1.2
M14	6016.07	6016.07	6014.37	6014.37	1
M15	6013.47	6013.87	6012.37	6012.37	1.1
M16	6011.67	6011.57	6010.27	6009.87	0.9
M17	6008.95	6008.95	6007.75	6007.35	0.9
M18	6007.45	6007.05	6006.05	6005.65	
M19	6005.33	6004.73	6003.63	6003.63	0.7
M20	6003.13	6003.13	6000.93	6001.33	1.2
M21	6000.43	6001.03	5998.18	5998.08	
M22	5996.98	5997.38	5995.28	5995.38	0
M23	5994.18	5994.28	5988.96	5988.96	0
Btm1					
RemPlug	5986.93	5986.83	5984.93	5984.93	0